2.导数与微分
1.导数
(1)定义
-
\(\lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=f'(x_0)\Leftrightarrow\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)\)
-
\(f'(x)存在\Leftrightarrow f'_+(x)=f'_-(x)\)
(2)性质
-
\(若f(x)在x处可导,则f(x)在此处连续\)
-
\(dy=f'(x)dx\)
-
\(\Delta y=dy+o(\Delta x)=f'(x_0)+o(\Delta x)\Rightarrow\Delta y-dy=\frac{1}{2}f''(\xi)(\Delta x)^2\)
(3)计算
-
函数的四则运算求导法则
-
初等函数求导法则
-
莱布尼茨公式
-
常见的n阶导数
-
\((e^{ax})^{(n)}=a^ne^{ax}\)
-
\((sin\ ax)^{(n)}=a^nsin(\frac{n\pi}{2}+ax)\)
-
\((cos\ ax)^{(n)}=a^ncos(\frac{n\pi}{2}+ax)\)
-
\((ln(1+x))^{(n)}=\frac{(-1)^{n-1}(n-1)!}{(1+x)^n}\)
-
\((ln\ x)^{(n)}=\frac{(-1)^{n-1}(n-1)!}{x^n}\)
-
\(((1+x)^{\alpha})^{(n)}=\alpha(\alpha-1)...(\alpha-n+1)(1+x)^{\alpha-n}\)
-
\((a^x)^{(n)}=a^xln^na\)
-
\((\frac{1}{x+a})^{(n)}=\frac{(-1)^{n}n!}{(x+a)^{n+1}}\)
-
-
复合函数求导
-
函数\(y=f(g(x))\),其中\(y=f(u),u=g(x)\)都可导,则
\[ y'=f'(u)u'(x)=f'(g(x))g'(x) \]
-
-
隐函数求导
- 等式两边同时求导,当作复合函数求导即可。
-
对数求导
- \(u(x)^{v(x)}=e^{v(x)ln\ u(x)}\)
-
参数方程求导
\(对\left\{\begin{aligned}x&=x(t)\\y&=y(t)\end{aligned}\right.,有y'_x=\frac{y'_t}{x'_t}\)
-
反函数求导
-
\(\frac{dx}{dy}=\frac{1}{y'}\)
-
\(\frac{d^2x}{dy^2}=\frac{d\frac{dx}{dy}}{dy}=\frac{d\frac{1}{y'}}{dx}\cdot\frac{dx}{dy}=-\frac{1}{(y')^2}\cdot y''\cdot\frac{1}{y'}=-\frac{y''}{(y')^3}\)
-
\(\frac{d^3x}{dy^3}=\frac{3(y'')^2-y'y'''}{(y')^5}\)
-